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Abstract. There have long been threads of investigation into covert
channels, and threads of investigation into anonymity, but these two
closely related areas of information hiding have not been directly as-
sociated. This paper represents an initial inquiry into the relationship
between covert channel capacity and anonymity, and poses more ques-
tions than it answers. Even this preliminary work has proven di�cult,
but in this investigation lies the hope of a deeper understanding of the
nature of both areas. MIXes have been used for anonymity, where the
concern is shielding the identity of the sender or the receiver of a mes-
sage, or both. Tra�c analysis prevention (TAP) methods are used to
conceal larger tra�c patterns. Here, we are concerned with how much
information a sender to a MIX can leak to an eavesdropping outsider,
despite the concealment e�orts of MIXes acting as �rewalls.

Introduction

Tra�c analysis in network communication can be used to open a covert
channel from Alice to Eve [12, 13, 23{25]. In this paper we discuss a particular
covert channel that exists in an anonymizing network.We present some simpli�ed
scenarios as a �rst step in this analysis.

? Research supported by the O�ce of Naval Research.

1



There is always one special transmitting node in a network called Alice. Alice
and possibly other transmitters have legitimate business transmitting messages
to a set of Receivers fRiji = 1; 2; :::;Mg. These transmitters act completely
independently of one another, and have no direct knowledge of each other's
recent transmission behavior. Alice may have some general knowledge of the
long-term tra�c levels produced by the other transmitters, e.g., the number
of other transmitters and their probabilistic behavior, which can allow Alice to
write a code that can improve the covert communication channel's data rate. She
cannot, however, perform short-term adaptation to their behavior. Our simpli�ed
communication is one-way (the receivers never send to Alice or to the other
transmitters). We also assume that there is a clock, and that transmissions only
occur in the unit interval of time called a tick. Any subset of transmitters can
each either send a single message to a single receiver in a tick, or not send a
message at all. Each transmitter in a tick can send to a di�erent receiver, and
two or more transmitters may send to the same receiver in the same tick. All
messages' contents are encrypted end-to-end.

There is also an eavesdropper on the network called Eve. Since all transmis-
sions are encrypted, they appear to the eavesdropper Eve as having indistin-
guishable content. Eve may be either a global passive adversary (GPA), with
the ability to see link tra�c on every link in the network, or a restricted passive
adversary (RPA), with the ability to observe tra�c only on certain links.

Alice is not allowed any direct communication with Eve. However, Alice can
inuence what Eve sees on the network. We present several di�erent scenarios
and analyze the subtle ways by which Alice may indirectly communicate with
Eve. In particular, we study network scenarios that attempt to achieve a degree
of anonymity with respect to the network communication. That is, the networks
are designed with various anonymity devices to prevent Eve from learning who
is sending a message to whom. Even if a certain degree of anonymity is achieved,
it still may be possible for Alice to communicate covertly with Eve. Please keep
in mind that anonymous communication networks were not designed with this
covert channel threat in mind. Rather, it was our study of these anonymity
networks that caused us to realize that even in what appears to be a benign
form of communication, information may still leak out of the network, contrary
to the intent of system design.

The main thrust of this paper is to analyze the situation where there are
two enclaves, communication between them is encrypted, and packets are sent
only from the �rst enclave (which contains Alice) to the second (please refer to
Figure 1). Eve is able to monitor the communication from the �rst enclave to
the second. Anonymity is \achieved" in that an eavesdropper such as Eve (as
RPA) does not know who is sending a message (that is hidden inside of the �rst
enclave) and nor who is receiving the message (this can only be known if one is
interior to the second enclave). Eve is only allowed to know how many messages
per tick travel from the �rst enclave to the second. Nonetheless, Alice attempts
to communicate covertly with Eve.
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Fig. 1. Restricted Passive Adversary Model.

This paper analyzes the covert communication channel from Alice to Eve. We
show that even if anonymity is taken into consideration with respect to system
design, covert channels may remain. As a baseline, we �rst consider situations in
which no attempt at anonymity has been made (only encryption of the messages,
so that they all appear to be identical to an eavesdropper). Later, we will consider
covert channel capacity in networks with the stronger anonymity controls just
described. This paper concludes with a summary and some directions for future
research.

1 Base Scenario | No anonymity

One transmitter

Alice is the only transmitter, and there are M possible receivers. Eve has
knowledge of the network tra�c (Eve is a GPA | see Figure 2). The only
properties that Eve can discern from a message is its source (trivially Alice) and
its destination. Alice can use that fact to send information covertly to Eve. In
this simplistic scenario Eve can see if Alice is sending a message, and if Alice is
sending a message Eve can determine for which receiver the message is meant.
This gives Alice the ability to signal Eve with an alphabet of M + 1 symbols:
M symbols for the M di�erent receivers, and one symbol (\0") for the choice of
not sending a message.

Since nothing is able to interfere with Alice's transmission, we have a noise-
less discrete memoryless channel (DMC) modeling the covert channel, whose
capacity is log(M + 1) bits per tick.1

Several transmitters
Now, if there are other transmitters aside from Alice, but their transmissions
to any of the M receivers do not a�ect Alice's transmissions, then the covert
channel from Alice to Eve is as above. This would be the case if the links into
a receiver can handle all of the tra�c meant for them. Of course, if the link

1 All logarithms are base 2, and we will also adopt the convenience of no longer stating
the units of the capacity. The units will be understood to be bits per tick.
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Fig. 2. Global Passive Adversary Model.

capacity into a transmitter does a�ect the number of receivable transmissions
then that introduces noise into the channel and the capacity is obviously less
than log(M + 1). This is a course of research worth pursuit.

Anonymity discussion
In the above scenario Alice can obviously leak considerable information to Eve.
This is no secret to the anonymity community, e.g., [1{4, 14, 15, 18, 6, 20] (while
the preceding list is only a representative sample of papers/URLs on the topic,
these papers relate particularly well to what we discuss in this paper). However,
in the past the concerns have focused on retaining or regaining anonymity. It
is the \anonymity lost" that we exploit for covert communication. If there were
\perfect" anonymity,2 then we would not expect to �nd a covert channel.

To provide anonymity, transmissions from a transmitter are often �rst sent
to an intermediary, such as a MIX [4] or an onion router [14], before they are
forwarded to the receiver. This has the e�ect of hiding whither the message is
going. Thus, these intermediaries serve to anonymize the transmission. Of course,
Eve still knows the set of those who receive a message, and she also knows the
set of those who sent a message, but she does not know who sent a message

2 We intentionally leave the notion of perfect anonymity as fuzzy in this paper. We ask
the reader though the somewhat circular question: If we did have perfect anonymity,
how could we have covert communication?

4



to whom. It is interesting that, even when we seem to have \good" statistical
anonymity, Alice may still non-trivially be able to communicate covertly with
Eve.

The use of a MIX alone does not prevent Alice from covert communication
with Eve. In fact there are two possible situations.

1. Alice signals Eve by sending or not sending a message. A MIX alone does
nothing to prevent Eve from learning this information (this is not what a
MIX is designed to do). We discuss this further at the beginning of the next
section. Therefore Alice has a noiseless channel to Eve, with a capacity of
one.

2. Alice signals Eve by sending a message to any one of M di�erent receivers.
If Alice is the only transmitter, Eve simply sees where messages are going
when they leave the MIX (a concern well-known to MIX designers). This
allows a covert channel with a capacity of log(M + 1). If there are other
users, their behavior a�ects what Eve is receiving and the capacity is then
less than log(M + 1).

We will not study the latter situation in this paper, because we do not use
pure MIXes. Instead, we use MIXes acting as �rewalls.

2 Scenario 2: Indistinguishable Receivers|Two

MIX-�rewalls

Consider the situation in which every message goes into the anonymizing inter-
mediary referred to as a MIX [4]. The MIX has the e�ect of hiding the \linking"
knowledge of which transmission is sent to which receiver. In other words, Eve
knows who is transmitting and who is receiving, but in general, Eve does not
know which transmitter is sending to which receiver. This assumes that Eve is a
GPA. Of course, if only one transmitter is operating then the MIX hides nothing.
In other words the MIX gives statistical anonymity. The amount of anonymity
has been measured as the log of the number of transmitters (anonymity set size),
sometimes in conjunction with probabilistic behavior (e.g., [2{4, 6, 20]).

The main concern of this paper is not with measuring anonymity, rather
it is the amount of covert information that may be leaked through less than
perfect anonymity. However, we do note the very important observation from our
research: the ability to covertly communicate arises due to a lack of anonymity.
As the number of transmitters goes up and as the transmitters behave in a
\uniform (equi-probabilistic) manner," the anonymity increases and we will show
that the covert channel capacity diminishes.

For Scenario 2 we assume that there are transmitters Alice and Cluelessi; i =
1; : : : ; N . The N Cluelessi transmitters behave independently of each other and
of Alice, and they all have the same time-invariant probabilistic behavior. Alice
and the Cluelessi are hidden from Eve. They submit their messages to a MIX
that also functions as a �rewall. This �rst MIX-�rewall acts as an exit point.
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This MIX-�rewall sends its encrypted messages to a second MIX-�rewall that
is an entrance to a second hidden (from Eve) enclave. We further assume that
Eve is a GPA only between the two MIX-�rewalls, i.e., an RPA. That is, Eve
only has knowledge of how many messages come out of the �rst MIX-�rewall
per tick, and Eve does not know to whom the messages are going. The situation
is described by the following diagram (Figure 3).

Alice, Cluelessi // MIX-�rewall
Eve // MIX-�rewall // Receivers

Fig. 3. MIX-�rewalls with Restricted Passive Adversary.

This situation is realistic3 if the MIXes are acting as (�rst) �rewall exit
and (second) entrance points, or if the MIXes are onion-type routers acting
as �rewalls. Therefore, as stated above, we assume throughout this scenario
that Eve only has knowledge of the number of messages coming out of a MIX
acting as a �rewall. Transmitters are allowed at most one transmission per tick.
Alice attempts to signal Eve by transmitting to one of M possible receivers
(which receiver Alice transmits to is immaterial), or by not transmitting at all.
However, Cluelessi is also transmitting without any regard to what Alice is doing.
The transmissions from both Alice and Cluelessi go into the �rst MIX-�rewall,
which acts as an exit point. Alice does not know what Cluelessi is doing (this
assumption is made throughout the paper). Eve sees messages coming out of the
�rst MIX-�rewall on their way to the second MIX-�rewall, but does not know
who sent them, or where they are going. All messages go into the second MIX-
�rewall, which sends them to their receivers. Every tick, Alice and each Cluelessi
either send or do not send one message each. Therefore, the only knowledge
that Eve can get by eavesdropping is the number of messages per tick passing
between the two MIX-�rewalls. In other words, every tick, Eve observes the
number of packets leaving the MIX-�rewall and \receives" some number from
the set f0; 1; � � � ; N + 1g.

Therefore the only quantity observable by Eve that Alice can a�ect, per tick,
is the number of messages that Eve counts. This covert channel is a discrete
memoryless channel with noise since the Cluelessi's randomly a�ect the output.

3 Consider the case of packets from one LAN/enclave being sent to another
LAN/enclave using IPSEC tunneling [8]. In this case, an eavesdropper can only
count the number of outgoing messages destined for the receiving enclave. What
goes on inside each LAN/enclave is hidden from an eavesdropper. If UDP with no
application level ACKs is employed, communication is only one-way [16].
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How does Eve regard the transmissions? What is the most information that Alice
can send to Eve in this manner? Shannon's information theory [21] answers these
questions for us.

Let us go back to the base scenario; here we stated that the capacity is
obviously log(M +1). How do we know that some other exploitation of the base
scenario will not give us a higher capacity? The reason is that there are at most
M + 1 symbols in whatever exploitation we use, and if the channel is noiseless
we have maximized the capacity (this is related to the maximum entropy as
discussed in [11].) For Scenario 2 capacity cannot be explained so easily and is
the major study of this paper.

Keep in mind that for Scenario 2 it does not matter if there is one receiver
or there are one hundred and one receivers. Eve can only count, and Alice or
Cluelessi can only send one message per tick. Therefore the number or receivers
does not matter. It is only important that there is at least one receiver.

We break Scenario 2 down into four cases: 2.0, 2.1, 2.2, and 2.3. Case 2.3 is
the general form of Scenario 2 and the �rst three are simpli�ed special cases.

2.1 Two special cases of Scenario 2: | Alice alone, and with and
one additional transmitter

Case 2.0 | Alice
This is the case where N = 0. Alice is the only transmitter. Alice sends either 0
(by not sending a message) or 0c (by sending a message | it does not matter to
which receiver Alice sends the message since that is indistinguishable to Eve).
Eve receives either e0 = 0 (Alice did nothing) or e1 = 1 (Alice sent a message to
a receiver). There is no noise in this channel. The capacity of this covert channel
is 1.

We develop the necessary information theory further on in the paper. How-
ever, we state the capacity is the maximum, over the probability x for Alice
inputting a 0, of the mutual information I(E;A). A is the distribution for Alice
described by x, and E is the distribution for Eve. Since there is no noise, I is
simply the entropy H(E) describing Eve.

I(E;A) = H(E) = �x logx� (1� x) log(1� x);

which is maximized to 1 when x = :5.

Case 2.1 | Alice and one additional transmitter (Clueless)
In this case N = 1. Therefore, Eve receives:

{ 0 if neither Alice nor Clueless transmit;
{ 1 if Alice does not transmit and Clueless does transmit, or Clueless transmits
and Alice does not; or

{ 2 if both Alice and Clueless transmit.

In the remainder of subsection 2.1 we develop the information theory to analyze
the covert channel for Case 2.1.
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Let us model the communications channel as follows: A is the input random
variable describing Alice, and E is the output random variable describing Eve.
Clueless contributes to the noise, but is not modeled as an input. Alice commu-
nicates with Eve via the covert channel. The input symbols for the channel are
0, which signi�es that Alice is not transmitting a message to any receiver, and
0c, which signi�es that Alice is transmitting a message to some receiver.4

A // anonymizing network // E

(a) Channel block diagram

0

0

p 22ffffffffffffffffff
q

,,XXXXXX
XXXXXXX

XXXXX

1

0c

�
22ffffffffffffffffff

�

,,XXXXXX
XXXXXXX

XXXXX

2

(b) Channel transition diagram

Fig. 4. Channel model for Case 2.1

4 At this point we caution the reader not to confuse Alice transmitting a message to
a receiver Ri, and Alice communicating to Eve via the covert channel. Eve is not
the receiver Ri in the sense of Alice or Clueless transmitting a message. Eve receives
symbols via the covert channel from Alice. There are two di�erent communication
paths that must be kept separate. One is the legitimate network communication
that the anonymizing device attempts to keep unknown. The other is the covert
communication that Alice has to Eve. A way to stop the covert communication would
be for the anonymizing device to pad [11{13, 23, 24] messages so that it would appear
to Eve that both Alice and Clueless are transmitting a message. This ine�ciency
might be tolerated in such an ideal situation as Case 2.1, but such a strategy must be
called into question when it comes to real tra�c. In Case 2.1 the anonymizing e�ect
is done by a MIX-�rewall, which does not a priori pad. Of course, before advocating
tra�c padding one should be fully aware of the threat that the padding is intended
to stop. Failure to understand the threat �rst is inadvisable since padding comes at
the pragmatic costs of e�ciency and proper network resource utilization.
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Figure 4 shows two ways to look at the channel. The top part (a) of the �gure
is the simple schematic. A is the input, E is the output, and the anonymizing
network (the two MIX-�rewalls between the transmitters and receivers) adds
noise. The bottom part (b) of Figure 4 shows that the inputs symbols are: 0,
which represents A not sending a message; and 0c, corresponding to A actually
sending a message to one of the M possible receivers. The output symbols corre-
spond to the three states E might perceive. The output symbol 0 corresponds to
no one sending a message; the output symbol 1 corresponds to Alice or Clueless,
but not both, sending a message; and the output symbol 2 corresponds to both
Alice and Clueless sending a message.

Let us consider the channel matrix.

M2:1 =

� 0 1 2

0 p q 0
0c 0 � �

�

The 2� 3 channel matrix M2:1[i; j] represents the conditional probability of Eve
receiving the symbol j when Alice sends the symbol i,

M2:1[i; j] = P (E = j j A = i):

We will show that p = �, and thus it trivially follows that q = �.
The probability P ( � j A = i) is totally dependent upon what Clueless

does (the action of Alice is already �xed at A = i, by the fact that it is a
conditional probability). Let us consider what happens when Clueless sends a
message, and assign a probability 1�� to Clueless sending the message.5 Consider
P (E = 0 j A = 0) and P (E = 1 j A = 0c). The only way for Eve to receive a 0,
when Alice has not sent a message, is for Clueless not to have sent a message.
Therefore, P (E = 0 j A = 0) = �. The only way for Eve to receive a 1, when
Alice has sent a message, is for Clueless not to have sent a message. Therefore,
we also have P (E = 1 j A = 1) = �. Thus p = � = �, and q = � = 1� p. So our
channel matrix simpli�es to:

� 0 1 2

0 p q 0
0c 0 p q

�
:

We wish to determine the channel capacity of the above discrete memory-
less channel. We let the probability that Alice sends a 0 be P (A = 0) = x,

5 We will assume from now on that such a distribution can be assigned, and further
that the distribution is stationary (it is the same each tick). Without such an as-
sumption we can still study the problem, but if the distribution is non-stationary the
analysis becomes much more di�cult since the channel is no longer memoryless. We
do not feel though that assigning Clueless a stationary distribution is that onerous.
The distribution could be assigned via statistical analysis of past behavior (to make
this valid one should assume that Clueless is not adapting to Alice's behavior). If
one cannot assign a random variable to Clueless then our analysis is erroneous.
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and therefore P (A = 0c) = 1 � x. The term x is the only term that can be
varied to achieve capacity. Here is where Alice may use knowledge of long-term
transmission characteristics of the other transmitters, as well as how many other
transmitters there are, to change her (long-term) behavior. As with other studies
of covert channels [10] we are not concerned with source coding/decoding issues
[21]. Our concern is the limits on how well a transmitter can \optimize" its bit
rate to a receiver, given that a channel is noisy. Given a discrete random variable
X , taking on the values xi; i = 1; : : : ; nX , the entropy of X is:

H(X) = �

nXX
i=1

p(xi) log p(xi) :

We use p(xi) as a shorthand notation for P (X = xi). Given two such discrete
random variables X and Y we de�ne the conditional entropy (equivocation) to
be:

H(X jY ) = �

nYX
i=1

p(yi)

nXX
j=1

p(xj jyi) log p(xj jyi) :

Given two such random variables we de�ne the mutual information between
them to be:

I(X;Y ) = H(X)�H(X jY ) :

Note thatH(X)�H(X jY ) = H(Y )�H(Y jX), so we see that I(X;Y ) = I(Y;X).
For a DMC whose transmitter random variable is X , and whose receiver

random variable is Y , we de�ne the channel capacity [21] to be:

C = max
X

I(X;Y );

where the maximization is over all possible distributions for X (that is, the p(xi)
are all non-negative and sum to one).

In this situation p(a0) = P (A = 0) = x, and p(a1) = P (A = 0c) = 1 � x.
Since varying x is varying all values of the input probabilities, the capacity of
the covert channel between Alice and Eve is

max
x
fH(E)�H(EjA)g:

H(EjA) can be trivially determined from the channel matrix. To calculate
H(E) we �rst must determine the distribution for E, which can be determined
from the conditional probabilities and the distribution for A. We see that:

p(e0) = P (E = 0)

= P (E = 0jA = 0)P (A = 0) + P (E = 0jA = 0c)P (A = 0c)

= px+ 0(1� x) = px;
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p(e1) = P (E = 1)

= P (E = 1jA = 0)P (A = 0) + P (E = 1jA = 0c)P (A = 0c)

= qx+ p(1� x);

and similarly,

p(e2) = P (E = 2) = q(1� x):

Therefore,

H(E) = �fpx log px+ [qx+ p(1� x)] log[qx+ p(1� x)] + q(1� x) log q(1� x)g:

Now, let us calculate the conditional entropy

H(EjA) = �
1X

i=0

p(ai)
2X

j=0

p(ej jai) log p(ej jai) :

This is:

�
�
P (A = 0)fp log p+ q log q + 0 log 0g+ P (A = 0c)f0 log 0 + p log p+ q log qg

�
;

which simpli�es to

H(E;A) = �
�
xfp log p+ q log qg+ (1� x)fp log p+ q log qg

�
:

Thus, H(EjA) = h(p),6 so

I(E;A) = �
�
px log px+[qx+p(1�x)] log[qx+p(1�x)]+q(1�x) log q(1�x)

�
�h(p) ;

and

C = max
x

(
�
�
px log px+[qx+p(1�x)] log[qx+p(1�x)]+q(1�x) log q(1�x)

�
�h(p)

)
:

One way to �nd the maximum is to take the �rst derivative of I(E;A) with
respect to x, and set it equal to zero. Since

d

dx

(
�
�
px log px+[qx+p(1�x)] log[qx+p(1�x)]+q(1�x) log q(1�x)

�
�h(p)

)

=
�1

ln 2

n
p ln p�(1�p) ln(1�p)+p lnx�(1�p) ln(1�x)+(1�2p) ln[(1�2p)x+p]

o
(1)

6 The notation h(p) denotes the function �p log p� (1� p) log(1� p).
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(noting that the derivative of h(p) is zero, and q = 1 � p), �nding the zero of
d
dxI(E;A) is equivalent to solving the following equation for x.

p ln p� (1� p) ln(1� p)+ p lnx� (1� p) ln(1�x)+ (1� 2p) ln[(1� 2p)x+ p] = 0

Letting � = e(1�p) ln(1�p)�p ln p, this reduces to solving

�[(1� 2p)x+ p]2p�1 � xp(1� x)p�1 = 0 : (2)

When p = 1=2, we have that � = 1, and we are left with 1�x1=2(1�x)�1=2 = 0.
Thus, when p = 1=2, the derivative (1) is maximized when x = 1=2. When
p = 0, � = 1, and we are left with x�1 � (1 � x)�1 = 0. Hence, when p = 0,
the derivative (1) also is maximized when x = 1=2. When p = 1, we have that
� = 1, and we are left with (1� x)1 � x = 0. Thus, when p = 1, the derivative
(1) likewise is maximized when x = 1=2. All of this might suggest that x = 1=2
always maximizes C, but this is not the case (see Figure 5).

Unfortunately, we cannot solve (2) in general. That is, we are unable to derive
a closed form expression for the x value that maximizes the derivative (1) as a
function of p. Therefore, we numerically solve7 for the zero of (1), and use that
value to evaluate I(E;A); this gives us the capacity as a function of p. Figure 5
shows plots of both the zero of d

dxI(E;A) as a function of p, and the capacity

C(p).8 Note that the zero of d
dxI(E;A) is the x value that maximizes I(E;A).

That is this choice of x determines the probability distribution of A (as stated
earlier P (A = 0) = x, and P (A = 0c) = 1�x) that achieves capacity (maximizes
the mutual information).

We see in Figure 5 certain symmetries. The capacity graph is symmetric
about p = :5, and the graph of the x that achieves capacity is skew-symmetric
about p = :5 (when p = :5 the corresponding x is also .5). Consider the two
situations where p = �, and where p = 1 � �; in both situations 0 � � � :5.
Let x� be the probability for the input symbol 0 that achieves capacity in the

7 At this juncture we could have numerically determined the maximum of I(E;A).
We chose instead to use Newton's method to �nd the zero of the derivative (1).
We do this because Newton's method is a fast method, and this way we learn more
about the derivative (1). The mutual information function is concave down, see [7]
[Thm. 4.4.2]&[5][Thm.2.7.4], as a function of x, and since in this paper the mutual
information is never locally constant (see Def. 1 later on in the paper), the maximum
(p �xed) is achieved for one and only one x value. Therefore, we can �nd the capacity
as follows. Evaluate, for �xed p, the mutual information as a function of x, letting x
go from 0 to 1 in increments of .001. Via the concavity argument this will give the x
value that maximizes the mutual information to the nearest .001. This is the capacity.
This method and Newton's method gave identical results. Later in the paper we will
not di�erentiate the mutual information due to the complexity of it and since we
will not be able to obtain closed form solutions for the x value that maximizes the
mutual information. We will instead use this simpler numerical method.

8 Holding p �xed we determine the zero of the derivative (1). Using that zero we eval-
uate I(E;A), using the �xed value of p and the associated zero of (1), to determine
the capacity.
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�rst situation, and let x1�� be the probability that achieves capacity for the
second situation. For the �rst situation we have that 1 � x� is the capacity
achieving probability for the output symbol 0c, and similarly for the second
situation 1 � x1�� is the capacity achieving probability for the output symbol
0c. Physically the two situations are \the same" if we reverse the roles of the
outputs symbols 0 and 2. Therefore x� = 1 � x1��. Writing x� as x� =

1
2 + �,

we see that x1�� =
1
2 ��; this is what the lower dotted plot shows in Figure 5

(� = 1=2) � = 0).
The above discussions bring to light two important observations that also

hold when there are N transmitters in addition to Alice.

Observation 1 In conditions of very little extra tra�c, or very high extra traf-
�c, the covert channel from Alice to Eve has higher bit rates.

Observation 2 The capacity C(p), as a function of p is strictly bounded below
by C(:5), and C(:5) is achieved when the mutual information is evaluated at
x = :5 .

It is obvious that very little extra tra�c corresponds to very little noise. At
�rst glance though, it seems counterintuitive that heavy tra�c also corresponds
to a small amount of noise. This is because the high tra�c is used as a baseline
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Fig. 6. Channel for Case 2.1 with � interference from Clueless.

against which to signal. This is analogous to transmission of bits over a channel
where the bit error rate (BER) Pe is greater than 1=2. In this case, the capacity
of the channel is the same as that of a channel with BER of 1 � Pe, by �rst
inverting all the bits. It is the in-between situations that negatively a�ect the
signaling ability of Alice. But, even in the noisiest case (i.e., where p = :5) Alice
can still transmit with a capacity of a half bit per tick.

Note that we can never guaranty error-free transmission, no matter how we
group the output symbols. In fact, it is possible that the outputs will always
be the symbol 1 (of course the probability of this quickly approaches zero, as
the number of transmissions goes up). So this covert channel has a zero-error
capacity [22] of zero. Capacity is a useful measure of a communication channel
if the assumption is that the transmitter can transmit a large number of times.
With a large number of transmissions an error-correcting code can be utilized so
as to achieve a rate close to capacity. If the transmitter only transmits a small
number of transmissions, then using the capacity alone can be misleading.

2.2 Case 2.2|Alice and two additional transmitters (N = 2)

This is similar to Case 2.1, the di�erence being that we have three possible
transmitters, A (random variable as before) for Alice, who is attempting to
communicate covertly with E (random variable as before) for Eve, and two other
benign \Clueless" transmitters modeled by the random variables C1, and C2, for
Clueless1 and Clueless2, respectively. Since the MIX-�rewalls only allow Eve to
count the number of outgoing messages, our covert channel has four possible
output symbols (the inputs are as before 0, for Alice not sending a message, and
0c, if Alice does send a message). The outputs are:

{ 0 | No one sends a message;
{ 1 | Alice sends a message, and neither Cluelessi send a message; or, Alice
does not send a message, and one, and only one, Cluelessi sends a message;

{ 2 | Alice sends a message and one, and only one, Cluelessi sends a message;
or, Alice does not send a message and both Cluelessi send a message;

{ 3 | Alice, Clueless1, and Clueless2 all send a message.

14



As stated earlier we assume that Clueless1 and Clueless2 act independently of
each other. Therefore, if, as before, p is the probability of a clueless transmitter
(Clueless1 or Clueless2) not sending a message into the MIX-�rewall, and q =
1�p is the probability of a clueless transmitter sending a message, the conditional
probabilities of E given Alice sending 0 are:

{ If Alice sends a 0, and Eve receives a 0, then the neither Clueless1 nor
Clueless2 sent a message; the conditional probability is p2.

{ If Alice sends a 0, and Eve receives a 1, then one, but not both, of Clueless1
or Clueless2, sent a message into the MIX; the conditional probability is then
2qp from (Clueless1 yes, Clueless2 no), or (Clueless1 no, Clueless2 yes) - they
are disjoint.

{ If Alice sends a 0, and Eve receives a 2, then both Clueless1 and Clueless2
sent a message into the MIX and the conditional probability is q2.

{ If Alice sends a 0, Eve never receives a 3, thus the conditional probability is
0.

Similarly we can analyze the case when Alice sends a 0c. The covert channel
diagram and channel matrix are shown in Figure 7.

0

0

p2 22ffffffffffffffffff
2qp

,,XXXXXX
XXXXXXX

XXXXX

q2
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KKK

KKK
K

1

0c
p2

22ffffffffffffffffff
2qp

,,XXXXXX
XXXXXXX

XXXXX

q2

&&MM
MMM

MMM
MMM

MMM
MMM

MMM

2

3

(a) Channel transition diagram

M2:2 =

� 0 1 2 3

0 p2 2qp q2 0
0c 0 p2 2qp q2

�

(b) Channel matrix

Fig. 7. Channel for Case 2.2.

We can easily observe that the zero-error capacity is zero because the output
symbols 1 and 2 can both be received if 0 or 0c is transmitted. Therefore there
is always some statistical error in what is received. This is similar to Case 2.1.
Now, what about the simpler notion of capacity? We again represent the input
random variable as A with distribution P (A = 0) = p(a0) = x, and P (A = 0c) =

15



p(a1) = 1� x. The output random variable is E with distribution P (E = j) =
p(ei); i = 0; 1; 2; 3, and the mutual information is I(E;A) = H(E) � H(EjA).
So,

I(E;A) = �

3X
j=0

p(ej) log p(ej) +

1X
i=0

p(ai)

3X
j=0

p(ej jai) log p(ej jai) :

The p(ej jai) are the i; j terms of the matrix M2:2, and p(a0) = x, so all we
need are the p(ej) terms. Since

p(ej) = p(ej ja0)p(a0) + p(ej ja1)p(a1)

= P (E = jjA = 0)P (A = 0) + P (E = jjA = 0c)P (A = 0c);

we see that:

p(e0) = p2x, and

p(e1) = 2qpx+ p2(1� x);

p(e2) = q2x+ 2qp(1� x);

p(e3) = q2(1� x) :

So we see that

H(E) = �

3X
j=0

p(ej) log p(ej)

= �

(
p2x log p2x+

�
2qpx+ p2(1� x)

�
log
�
2qpx+ p2(1� x)

�

+
�
q2x+ 2qp(1� x)

�
log
�
q2x+ 2qp(1� x)

�
+ q2(1� x) log q2(1� x)

)
:

We also have that

�H(EjA) =

1X
i=0

p(ai)

3X
j=0

p(ej jai) log p(ej jai) = 2[qp� h(p)] :

Therefore , we see that the mutual information is

I(E;A) = �

(
p2x log p2x+

�
2qpx+ p2(1� x)

�
log
�
2qpx+ p2(1� x)

�
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+
�
q2x+ 2qp(1� x)

�
log
�
q2x+ 2qp(1� x)

�
+ q2(1� x) log q2(1� x)

)

+2[qp� h(p)]

We will often simply write the mutual information as I instead of I(A;E) =
I(E;A). Let us �x the value of p at some boundary values and see what happens
to the mutual information.

I jp=0 = I jp=1 = h(x) :

Therefore, since capacity is the maximum over x of I , we see that (viewing
capacity as a function of p):

C(p = 0) = C(p = 1) = 1

Certainly since the input is limited to the two symbols 0 and 0c, capacity is
bounded between zero and one. Let us consider the channel diagrams in these
two special cases.

In both of these cases we have a noiseless channel on two symbols. Therefore,
the capacity is maxx h(x) which is simply one. The more interesting cases, when
0 < p < 1, we solve numerically and plot the results in Figure 9. Of course, the
capacity is symmetric about .5 because of the inherent symmetry between p and
q.

Figure 10 depicts on one plot the capacity from Case 2.1 (two transmitters
| Clueless) and the capacity from Case 2.2 (three transmitters | Clueless1,
Clueless2).

Except for the boundary values, the capacity is always less for a given p
with three transmitters than with two. This is not surprising, the extra clueless
transmitter means extra noise. Note that the noisiest case is when p = :5; in
this case the channel diagram is given in Figure 11. In this case, the capacity is
achieved when P (A = 0) = x = 1=2, and the capacity is � :3113 (this can be
argued through symmetry; we make it precise below in the general case).

Unfortunately we cannot derive closed form solutions even for these simple
cases. Therefore, it seems unlikely that we can derive a closed form for the general
case of N clueless transmitters in addition to Alice. Of course, we could still
derive the capacity numerically. However, we are able to obtain some bounding
results.

2.3 Case 2.3|Alice and N additional transmitters

Case 2.3 is the general form of Scenario 2. Now9 we imagine that there are N+1
transmitters, Alice is one of them, and the otherN are all independently identical

9 One could relax the assumption that all the Cluelessi have identical and independent
behavior.
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Fig. 8. Special cases for the channel diagram for Case 2.2.

clueless transmitters. That is, there are transmitters Clueless1, Clueless2, : : :,
CluelessN . Again, Eve can only see how many messages are leaving the �rst
MIX-�rewall headed for the second MIX-�rewall. Therefore Eve can determine
if there are 0; 1; : : : ; N + 1 messages leaving the �rewall. That is all Eve can
determine. Therefore, there are still the two input symbols a0 = 0 and a1 = 0c,
but we have N +2 output symbols. The probability that Cluelessi does not send
a message is still p, and that it does send a message is q = 1� p. Now, calculate
the channel matrix.

Alice sends a 0.

{ For Eve to receive ek (that is E = k), 0 � k � N we need k of the clueless
transmitters to send a message, and N�k not to send a message. Therefore,

p(ekjA = 0) =

�
N

k

�
pN�kqk; 0 � k � N:

{ p(eN+1jA = 0) = 0, since the event never happens because Alice is not
transmitting.
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Fig. 9. Capacity as a function of p for three transmitters.

Alice sends a 0c.

{ p(e0jA = 0c) = 0, since the event never happens, because Alice is transmit-
ting so Eve must observe at least one message.

{ For Eve to receive ek (that is E = k), 1 � k � N + 1 we need k � 1 of the
clueless transmitters to send a message, and N�k+1 not to send a message.
Therefore,

p(ekjA = 0c) =

�
N

k � 1

�
pN�k+1qk�1; 1 � k � N + 1:

Since p(ek) = p(ekjA = 0)P (A = 0) + p(ekjA = 0c)P (A = 0c), we have that

p(e0) = xpN ;

p(ek) = x

�
N

k

�
pN�kqk + (1� x)

�
N

k � 1

�
pN�k+1qk�1 ; 1 � k � N , and

p(eN+1) = (1� x)qN :
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Fig. 10. Capacity as a function of p for both two and three transmitters.

So the entropy of E is

H(E) = �

(
xpN logxpN +

NX
k=1

"
x

�
N

k

�
pN�kqk + (1� x)

�
N

k � 1

�
pN�k+1qk�1

#

log

"
x

�
N

k

�
pN�kqk + (1� x)

�
N

k � 1

�
pN�k+1qk�1

#
+ (1� x)qN log(1� x)qN

)
:

0
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Fig. 11. Channel diagram for noisiest situation for Case 2.2.
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Fig. 12. Channel for Case 2.3, the general case of N clueless users.

The conditional entropy is a little easier to deal with.

H(EjA) = �

 
x

(
NX
j=0

��
N

j

�
pN�jqj

�
log

��
N

j

�
pN�jqj

�)

+(1� x)

(
N+1X
j=1

��
N

j � 1

�
pN�j+1qj�1

�
log

��
N

j � 1

�
pN�j+1qj�1

�)!

H(EjA) = �

NX
l=0

��
N

l

�
pN�lql

�
log

��
N

l

�
pN�lql

�
(3)

Observe that H(EjA) is independent of x. Therefore, to maximize the mutual
information we only need to maximize H(E).

The mutual information is

I(E;A) = �

(
xpN logxpN
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+

NX
k=1

"
x

�
N

k

�
pN�kqk + (1� x)

�
N

k � 1

�
pN�k+1qk�1

#

log

"
x

�
N

k

�
pN�kqk + (1� x)

�
N

k � 1

�
pN�k+1qk�1

#

+(1� x)qN log(1� x)qN

)

+
NX
l=0

��
N

l

�
pN�lql

�
log

��
N

l

�
pN�lql

�
(4)

For Case 2.1 (one Clueless in addition to Alice) and for Case 2.2 (two clueless
in addition to Alice) we discussed the symmetry about p = :5 informally. Case
2.3 includes Cases 2.1 and 2.2 as special cases, and we prove this symmetry exists
for the general case.

Theorem 1 I(E;A)jx;p = I(E;A)j1�x;q

PROOF: By inspecting Eq. 4 we see that the last term (�H(EjA)) is indepen-
dent of x, so we can ignore it. The terms xpN logxpN and (1�x)qN log(1�x)qN

are interchanged when x and p are interchanged with 1 � x and q, respec-
tively. This leaves the complicated term in the middle of Eq. 4. We de�ne

Aj(x; p) =
h
x
�
N
j

�
pN�jqj + (1� x)

�
N
j�1

�
pN�j+1qj�1

i
, therefore the middle term

is just

NX
k=1

Ak(x; p) logAk(x; p). We consider the complementary j and N � j+1

indices. Note, AN�j+1(x; p) =
h
x
�

N
N�j+1

�
pj�1qN�j+1 + (1� x)

�
N

N�j

�
pjqN�j

i
.

(There are always such complementary terms except for when N is odd and j is
the \middle" index dN=2e. We will return to this special case.)

Consider Aj(x; p) and the complementary AN�j+1(x; p). Using the identity�
N
k

�
=
�

N
N�k

�
it trivially follows that Aj(x; p) = AN�j+1(1 � x; q) : Therefore,

since N � (N � j + 1) + 1 = j we see that

Aj(x; p) logAj(x; p) +AN�j+1(x; p) logAN�j+1(x; p)

= AN�j+1(1� x; q) logAN�j+1(1� x; q) +Aj(1� x; q) logAj(1� x; q) :

Now let us look at the special case where N is odd and we are consider-
ing AdN=2e(x; p), which does not have a complementary term, since dN=2e =
N � dN=2e+ 1. However, it trivially follows that N � dN=2e = dN=2e � 1, and
hence we also trivially have that

�
N

dN=2e

�
=
�

N
dN=2e�1

�
. Therefore, by substitution

one sees that AdN=2e(x; p) = AdN=2e(1� x; q): 2

We will need the following in the rest of the paper so we will consider
I(E;A)jp=:5 = H(E)p=:5 �H(EjA)p=:5 now.
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Consider the entropy of E evaluated when p = 1
2 .

H(E)jp=:5 = �

(
x

�
1

2

�N

logx

�
1

2

�N

+

NX
k=1

"
x

�
N

k

��
1

2

�N

+ (1� x)

�
N

k � 1

��
1

2

�N
#

log

"
x

�
N

k

��
1

2

�N

+ (1� x)

�
N

k � 1

��
1

2

�N
#

+(1� x)

�
1

2

�N

log(1� x)

�
1

2

�N
)

(5)

Consider the conditional entropy when p = 1
2 .

H(EjA)jp=:5 = �

NX
l=0

"�
N

l

��
1

2

�N�l�
1

2

�l
#
log

"�
N

l

��
1

2

�N�l�
1

2

�l
#

= �

NX
l=0

"�
N

l

��
1

2

�N
#
log

"�
N

l

��
1

2

�N
#

= �

�
1

2

�N
(

NX
l=0

�
N

l

�
log

�
N

l

�
�N

NX
l=0

�
N

l

�)

= �

�
1

2

�N
(

NX
l=0

�
N

l

�
log

�
N

l

�
�N2N

)

= N �

�
1

2

�N NX
l=0

�
N

l

�
log

�
N

l

�

Note that H(EjA)jp=:5 is independent of x. Keep in mind that we may ex-
press the mutual information evaluated at (x0; p0) by the slightly overloaded
notation I(E;A)jx=x0;p=p0 . Of course I(E;A)jp=p0 is simply a function of x, and
I(E;A)jx=x0 is a function of p.

De�nition 1 We say that an arbitrary (real valued) function is not locally-
constant i� for all x with f(x) de�ned at x, and for every � > 0, there exists an
x0 such that d(x0; x) < � (i.e., x0 in the neighborhood of x) with f(x0) 6= f(x).

That is, for no neighborhood, no matter how small, is the function constant.

De�nition 2 We say that a function f : [0; 1]! R is symmetric about x = :5,
i� f(x) = f(1� x).
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Observation 3 If f(x) is symmetric about x = :5 and it is concave down (con-
vex up) then f(:5) is a maximum (minimum) value. Further, if f(x) is not
locally-constant then .5 is the only such critical point.

Theorem 2 I(E;A)jp=:5 is symmetric about x = :5.

PROOF: By Thm. 1 we see that I(E;A)jx;:5 = I(E;A)j1�x;:5.
2

Theorem 3 C(:5) = I(E;A)jx=:5;p=:5.

PROOF: By Theorem 2, we know that I(E;A)jp=:5 is symmetric about x =
:5, and [7][Thm. 4.4.2]&[5][Thm.2.7.4] show that I(E;A)jp=:5 (and in general
I(E;A) for �xed p) is concave down. Therefore, from Observation 1, I(E;A)jp=:5

obtains its maximum value when x = :5. Since capacity, when p = :5, is the
maximum of I(E;A)jp=:5, we are done.
2

Theorem 4 C(p) � I(E;A)jx=:5;p=:5.

PROOF: By de�nition C(p) � I(E;A)jx=:5, since capacity is the maximum of
the mutual information. For x �xed I(E;A)jx is a convex up function of p (see
[7][Thm. 4.4.2]&[5][Thm.2.7.4]). By Thm. 1 we see that I(E;A)jx=:5 is symmet-
ric about p = :5. By Observation 3 we see that I(E;A)jx=:5 � I(E;A)jx=:5;p=:5.
2.

This allows us to use the simple single value I(E;A)jx=:5;p=:5 as a lower
bound for the covert channel capacity.

Corollary 1 C(p) � C(:5)

PROOF: Apply Theorems 3 and 4 together.
2.

Theorem 5 C(p) = C(1 � p) and if xp is the unique x such that C(p) =
I(E;A)jxp;p, then x1�p = 1� xp.

PROOF: This trivially follows from Thm. 1 and the uniqueness (follows from
the concavity properties and the fact that the mutual informaiton is not-locally
constant|this follows by inspection of I(E;A)) of the critical x value.
2

Let us now use these results to bound capacity from below. We now con-
sider the formula for mutual information when x = p = :5. Thus, we study
I(E;A)jx=:5;p=:5 asN varies. Let us �rst calculateH(EjA)jx=:5;p=:5, sinceH(EjA)
is independent of x:

H(EjA)jx=:5;p=:5 = H(EjA)jp=:5 = N �

�
1

2

�N NX
l=0

�
N

l

�
log

�
N

l

�
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From Eq. 5 we know H(E)jp=:5.

In what follows we use the identity
�
N
k

�
+
�

N
k�1

�
=
�
N+1
k

�
, and the fact that

NX
k=1

�
N + 1

k

�
=

N+1X
k=0

�
N + 1

k

�
�

�
N + 1

0

�
�

�
N + 1

N + 1

�

= (1 + 1)N+1 � 1� 1 = 2N+1 � 2 :

So

H(E)jx=:5;p=:5 = �
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= �

(
� (N + 1)

�
1
2

�N

�
(N + 1)

2N+1
(2N+1 � 2) +

�
1

2

�N+1 NX
k=1

�
N + 1

k

�
log

�
N + 1

k

�)

= N + 1�
�
1
2

�N+1
NX
k=1

�
N + 1

k + 1

�
log

�
N + 1

k

�
Since I(E;A)jx=:5;p=:5 = H(E)jx=:5;p=:5 �H(EjA)jx=:5;p=:5, we see that:

I(E;A)jx=:5;p=:5 = N + 1�

�
1

2

�N+1 NX
k=1

�
N + 1

k

�
log

�
N + 1

k

�

�

(
N �

�
1

2

�N NX
l=0

�
N

l

�
log

�
N

l

�)

Therefore,

C(:5) = 1 +

�
1

2

�N
(

NX
l=0

�
N

l

�
log

�
N

l

�
�

1

2

NX
k=1

�
N + 1

k

�
log

�
N + 1

k

�)
:

Since
�
N+1
0

�
log
�
N+1
0

�
= 0, we can simplify this to:

C(:5) = 1�

�
1

2

�N NX
k=0

(
1

2

�
N + 1

k

�
log

�
N + 1

k

�
�

�
N

k

�
log

�
N

k

�)
: (6)

N C(:5) N C(:5)
1 0.500000 13 0.053593
2 0.311278 14 0.049873
3 0.219361 15 0.046638
4 0.167553 16 0.043799
5 0.135170 17 0.041287
6 0.113278 18 0.039048
7 0.097558 19 0.037039
8 0.085730 20 0.035228
9 0.076502 21 0.033586
10 0.069092 22 0.032090
11 0.063007 23 0.030722
12 0.057917 24 0.029466

25 0.028309

C(:5) = lower capacity bounds for all p, N = 1; : : : 25
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Of course there are further relationships that can be exploited but they do
not seem to assist in the analysis, but rather seem to obfuscate the symmetries.

The above table shows the results of numerical calculations of C(:5) to six
decimal places.

Note that in the general circumstances of Case 2.3, if p = 0 (or similarly
q = 0), we have a noiseless channel and the capacity is one, which is achieved
when x = :5. So we see that 1 is a tight upper bound for the capacity. Therefore
we have the following result:

For Alice and N (N > 0) transmitters: C(:5) � C(p) � 1 and these bounds are tight.

Of course keep in mind the result from Case 2.0:

For Alice and no additional transmitters: Capacity = 1:

Therefore the region between the two plots for the N values represent the re-
gion where the capacity falls, depending on the behavior of the other, clueless
transmitters (and Alice's knowledge of and long-term adaptation to them). Fur-
thermore, the entire region is spanned by di�erent choices of p (we ignore p for
the degenerate case of N = 0). See Figure 13.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ap

ac
ity

 r
eg

io
n 

is
 ti

gh
tly

 b
et

w
ee

n 
th

e 
tw

o 
pl

ot
s 

fo
r 

in
te

ge
r 

N

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ap

ac
ity

 r
eg

io
n 

is
 ti

gh
tly

 b
et

w
ee

n 
th

e 
tw

o 
pl

ot
s 

fo
r 

in
te

ge
r 

N

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ap

ac
ity

 r
eg

io
n 

is
 ti

gh
tly

 b
et

w
ee

n 
th

e 
tw

o 
pl

ot
s 

fo
r 

in
te

ge
r 

N

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ap

ac
ity

 r
eg

io
n 

is
 ti

gh
tly

 b
et

w
ee

n 
th

e 
tw

o 
pl

ot
s 

fo
r 

in
te

ge
r 

N

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ap

ac
ity

 r
eg

io
n 

is
 ti

gh
tly

 b
et

w
ee

n 
th

e 
tw

o 
pl

ot
s 

fo
r 

in
te

ge
r 

N

N

Fig. 13. Capacity region for Case 2, N = 0 to 25.
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As N grows so does the noise. Therefore, we see that the capacity is non-
increasing. We are interested in the lower bound C(:5). We have numerically
calculated C(:5) to N = 7750 and have shown that C(:5) is monotonically de-
creasing to zero (for N=7750, C(:5) = :000093). We can (but do not since it is
many pages in length) analytically show C(:5) is monotonic decreasing. That is
not surprising since increasing the number of clueless users increases the noise,
but it is surprising that it is so di�cult to show that C(:5) goes to zero as N
goes to in�nity. Below we discuss that fact in more detail.

From Eq. (6) we can express C(:5) as

C(:5) = 1�

�
1

2

�N

S(N) ;

where

S(N) ,

NX
k=0

(
1

2

�
N + 1

k

�
log

�
N + 1

k

�
�

�
N

k

�
log

�
N

k

�)
:

First we will simplify S(N).

Theorem 6 S(N) = 2N log(N + 1)�

NX
k=0

�
N

k

�
log(k + 1)

PROOF: De�ne

�(N) ,

NX
k=0

�
N

k

�
log

�
N

k

�
:

By expanding log
�
N
k

�
as logN !� log(N � k)!� log k!, and using

NX
k=0

�
N

k

�
= 2N ,

�
N
k

�
=
�

N
N�k

�
, and

NX
k=0

f(k) =

NX
k=0

f(N � k), we have that

�(N) = 2n logN !� 2

NX
k=0

�
N

k

�
log k!:

Therefore,

�(N + 1) = 2N+1 log(N + 1)!� 2

N+1X
k=0

�
N + 1

k

�
log k!:

Since 1 log 1 = 0, we have that

S(N) =
1

2

NX
k=0

�
N + 1

k

�
log

�
N + 1

k

�
�

NX
k=0

�
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�
log

�
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k=0

�
N + 1
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�
log

�
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�
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=
1

2
�(N + 1)� �(N)

= 2N log(N + 1) + 2

NX
k=0

�
N

k

�
log k!�

N+1X
k=0

�
N + 1

k

�
log k!

Recalling the identity
�
N+1
k

�
=
�
N
k

�
+
�

N
k�1

�
, and using the fact that

�
N
k

�
= 0, if

k < 0 or k > N , we further simplify the above to:

S(N) = 2N log(N + 1) +
N+1X
k=0

�
N

k

�
log k!�

N+1X
k=0

�
N

k � 1

�
log k!

= 2N log(N + 1) +

NX
k=0

�
N

k

�
log k!�

N+1X
k=0

�
N

k � 1

�
log k!

after re-indexing the second sum

= 2N log(N + 1) +

NX
k=0

�
N

k

�
log k!�

NX
k=0

�
N

k

�
log(k + 1)!

since log(k + 1)! = log(k + 1) + log k!

S(N) = 2N log(N + 1)�

NX
k=0

�
N

k

�
log(k + 1) 2

Keep in mind our goal is to study the behavior of C(:5) as N ! 1. However,
�rst we need a technical lemma.

Lemma 1
NX
k=1

�
N

k

�
kp = 2N�pQp(N), for p < N , where Qp(N) is a monic

polynomial in N of degree p.

PROOF: In [17, Formulas 1,2,7,8,9,10 p. 608] or [19, Formula 34 p. 85] it is
shown that

NX
k=1

�
N

k

�
kp = 2N�p

�
N

p

�
p! + 2

P�1X
i=1

(�1)i
�
N

i

�
1

2i

iX
j=1

(�1)j
�
i

j

�
jp:

The term 2N�p
�
N

p

�
p! is simply 2N�p multiplied by N � (N � 1) � � � (N � p+1),

which is simply 2N�p times a monic polynomial in N of degree p. The other

term, 2

p�1X
i=1

(�1)i
�
N

i

�
1

2i

iX
j=1

(�1)j
�
i

j

�
jp, is polynomial in N of degree less than

p.
2

We are now ready for the major result.
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Theorem 7 lim
N!1

C(:5) = 0 :

PROOF: We will prove the result by showing that
�
1
2

�N
S(N) approaches one,

since C(:5) = 1�
�
1
2

�N
S(N), this su�ces.

Our �rst step is to use natural logarithms instead of base two logarithms.

S(N) =
1

ln 2

(
2N ln(N + 1)�

NX
k=0

�
N

k

�
ln(k + 1)

)
:

Consider
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�
ln

�
1�

k

1 +N

�
:

Now we use the Maclaurin series of ln(1� x) =

1X
n=1

�

�
xn

n

�
, which is valid

for jxj < 1,

NX
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�
N

k

�
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�
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k

1 +N

�
=

NX
k=0

�
N

k

� 1X
p=1

kp

p(1 +N)p

(In what follows we do not give an epsilon-delta style proof. Rather we ignore
uniform convergence issues and freely pass terms in and out of the sums. This
is done in the interest of space and intuition.)

=
1X
p=1

1

p

1

(1 +N)p

"
NX
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N
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�
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#
=

1X
p=1

1

p

1
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NX
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�
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#

(Now we use Lemma 1)

= 2N
1X
p=1

( 12 )
p

p

�
Qp(N)

(N + 1)p

�

We know can write
�
1
2

�N
S(N) as
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�
1

2

�N

S(N) =
1

ln 2

(
1X
p=1

( 12 )
p

p

�
Qp(N)

(N + 1)p

�)
:

Since Qp(N) is a monic polynomial in N of degree p, lim
N!1

�
Qp(N)

(N + 1)p

�
= 1.

Therefore,

lim
N!1

�
1

2

�N

S(N) =
1

ln 2

1X
p=1

( 12 )
p

p
=
�1

ln 2
ln(1�

1

2
) = 1 :

Since C(:5) = 1�
�
1
2

�N
S(N), we are done.

2

2.4 Continuity

For Scenario 2 we wished to say that capacity was a continuous function of p.
We thought that we could just use some standard information-theoretic result.
Unfortunately, we could not �nd such a result. We do not think that it would be
too hard to argue from the various concavity properties of mutual information
that C(p) is a continuous function (of p). However, we decided to present a more
general result.

Theorem 8 Let F (x; p) be a continuous10 function de�ned on [0; 1]� U , U an
arbitrary subset of the reals, and assume that for each �xed p, F (x; p) achieves
a maximum denoted as � (p). Then � (p) is a continuous function of p.

PROOF: If � (p) is not continuous, then 9 a point of discontinuity p0. This
means that there is an �� > 0 such that for any � > 0, 9 a p� such that jp��p0j < �
but j� (p�)� � (p0)j � ��.

There is some x0 such that � (p0) = F (x0; p0) = maxx F (x; p0; ) (there may
be more than one such \maximizing" x).

Keep in mind though that F (x; p) is a continuous function. This means that
for every (t; p0); t 2 [0; 1], 9 a �t > 0 such that11 df(x; p); (t; p0)g < �t )

jF (x; p) � F (t; p0)j < ��. The set
n
(x; p) j df(x; p); (t; p0)g < �t

o
is called a �t-

neighborhood of (t; p0). Every �t-neighborhood of (t; p0) can be replaced with an
open square box centered about (t; p0) with side length �t, we call this a �t-box
neighborhood of (t; p0). This �t-box neighborhood of (t; p0) is a proper subset
of the �t-neighborhood of (t; p0).

12 Since [0; 1]� p0 is a compact set (closed and

bounded) and the
n
�t-box neighborhood of (t; p0) j t 2 [0; 1]

o
is a collection of

10 In this paper all functions are real valued.
11 d is the standard Euclidean metric in the plane.
12 Keep in mind that when we form any sort of neighborhood we must intersect it with
f[0; 1] � Ug, therefore our �t-balls or �t-boxes might not be actual balls or boxes.
They might have gaps in them and not extend symmetrically on both sides of p0.
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open sets that cover [0; 1]� p0, it can be replaced by a �nite subcollection that
also acts as a cover. Recall the point x0, we require that the �x0-box neighbor-
hood of (x0; p0) be in this �nite subcollection (if it is not, just add it in). De�ne

a set T
def
= f ti j i 2 f1; : : : ; Ng; ti 2 [0; 1]; and x0 is one of the ti g such that[

ti2T

n
�ti-box neighborhood of (ti; p0)

o
covers [0; 1]� p0. For simplicity we refer

to the union of these sets as FC. Let d = 1
2 �minft

ig (this is where we use �nite-
ness). Note that if (x0; p) 2 FC, then 9tj 2 T such that jF (x0; p)�F (tj ; p0)j < ��.

Since � (p) is not continuous at p0 we know that there is a p� such that
jp� � p0j < d but j� (p�) � � (p0)j � ��. We know that there is some x� such
that � (p�) = F (x� ; p�) = maxx F (x; p�) (there may be more than one such
\maximizing" x). We have two cases to consider:

1. � (p�) > � (p0): So � (p0) � � (p�)� ��
Since d was chosen to be minimal by construction (x� ; p�) 2 FC. So for some
tj we have that jF (x� ; p�)� F (tj ; p0)j < �� , which is the same as
jF (tj ; p0)�� (p�)j < ��. So � (p�)��� < F (tj ; p0), therefore � (p0) < F (tj ; p0),
which is impossible since � (p0) cannot be less than F (x; p0) for any x.

2. � (p�) < � (p0): So � (p�) � � (p0)� ��
Recall that we constructed FC so that it would contain the �x0-box neigh-
borhood of (x0; p0). Therefore, since jp� � p0j < d, and d was chosen min-
imal, we have that (x0; p�) 2 �x0 -box neighborhood of (x0; p0). Therefore,
jF (x0; p�) � F (x0; p0)j < ��, which is the same as jF (x0; p�) � � (p0)j < ��.
So � (p0)� �� < F (x0; p� ; ), therefore � (p�) < F (x0; p�), which is impossible
since � (p�) cannot be less than F (x; p�) for any x.

Hence we have a contradiction, so � (p) must be continuous.
2

We note that we used boxes instead of circles because it was easier to con-
struct a distance d so that all points would be guaranteed to be in FC.

It is not important that x 2 [0; 1]; what is important is that [0; 1] is a compact
set. Note that if D is not a compact set there are counter-examples.

Corollary 2 Let F (x; p) be a continuous function, where p 2 U and x 2 D
where D is a closed and bounded subset of the real line. Assume that for each
�xed p, F (x; p) achieves a maximum denoted as � (p). Then � (p) is continuous
in p.

This is a technical point that we will not labor upon further. It does not a�ect the
proof. What is important is that they are open sets. We have also used the fact that
in a circle of radius r the largest box that can be inscribed (it is also centered about
the center of the circle) has side length

p
2 r, we use a smaller box. Also when we

construct d later we use 1

2
of a value, that is done since we are only looking at one

side of a box.
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Since, for Scenario 2, we see by inspection that the mutual information is a
continuous function of (x; p), and x 2 [0; 1], we have the following result.

Theorem 9 For Scenario 2, C(p) is a continuous function.

We believe that continuity results such as this are important, but they seem
to be overlooked in the literature

3 Comments, Generalizations & Future Work

3.1 Comments

We �rst note that despite the obfuscation provided by MIX-�rewalls, and the
attendant noise introduced by other transmitters, Alice is still able to transmit
information to Eve. At this point, we recall our earlier observations and add to
them below.

1. In conditions of very little extra tra�c, or very high extra tra�c, the covert
channel from Alice to Eve has higher bit rates.

2. The capacity C(p), as a function of p is strictly bounded below by C(:5),
and C(:5) is achieved when the mutual information is evaluated at x = :5
(of course p = :5 also in this situation).

3. The capacity C(p), as a function of p is strictly bounded below by a function
that decreases monotonically to zero as the number of transmitters increases,
but is never zero.

4. The bias in the code used by Alice to achieve the optimum data rate on
the channel is not always x = 0:5, but it is never far from 0:5, and our
preliminary experimental results indicate that the di�erence in capacity is
minor.

The last observation agrees with [9], which presents the general result that in
DMCs, capacity obtained by using x = :5 is no less than 94.21% of the optimum
channel capacity. Even if Alice has no knowledge of the probabilistic behavior of
the other transmitters, her data rate will not be too far from optimal if she uses
an unbiased code. (Note, however, that the coding rate is very much dependent
on knowledge of the number of other transmitters and their behavior.)

3.2 Future Work

Following up the last observation from the preceding subsection, we note that it
does not hurt Alice too much if she does not use the optimum bias in her code
(i.e., she does not know much about p). However, the choice of code will depend
greatly on the channel capacity among other characteristics. It appears that at
less noisy conditions (p near 0 or p near 1), the load, L(N; p) = pN , in expected
packets per tick sent by the other transmitters, dominates in determining the

33



capacity. That is, for small p or 1�p, de�ning IN (E;A) as the mutual information
with N other transmitters,

IN (E;A)jkp � IkN (E;A)jp :

For intermediate values of p, (i.e., p near 0.5), the capacity is mostly inuenced
by N , the number of transmitters. As N increases, experimental results show
that the curves of C(p) versus p become increasingly \at-bottomed," hence
are less sensitive to p for the intermediate values of p. So for Alice, knowing
N is crucial unless the loads are rather low, in which case the load is the most
important factor.

For Scenario 2 we assume that every Cluelessi was given by the same proba-
bility distribution. The probability p measured Cluelessi not sending a message.
One can generalize Scenario 2 to allow these probabilities to vary. That is we
can assign the probability pi to Cluelessi not sending a message. Of course this
changes the analysis that we have given above. We conjecture that the observa-
tions regarding the load and number of transmitters remains true as long as the
pi's are not too di�erent. The case of varying probabilities will be taken up in
future work. However, we feel that our simplistic assumptions serve to show the
di�culty of the analysis and to show some general trends. Furthermore, we feel
that our assumptions are a good gross model of system behavior.

In future work we will also analyze the situation where we have only an exit
point MIX-�rewall as shown below.

Alice, Cluelessi // MIX-�rewall
Eve // Receivers

Fig. 14. Scenario with exit point MIX-�rewall only.

We have M receivers denoted R1; : : : ; RM . Eve still does not know directly
who sent a message, but Eve does know where messages are going. This increase
the capacity of the covert channel. Alice now instead of just sending 0 or 0c can
send: 0 (not transmitting); 1 (message to the �rst receiver), ... , i (message to
the ith receiver, ... ,M (message to the Mth receiver). The greatest the capacity
can be is log(M + 1). Of course if M = 1 the situation reduces to Scenario 2.

As before the Cluelessi are assumed independent and one may allow their
distributions to be identical or they may vary.

Related to this is an intermediate question of the nature and capacity of
covert channels in a network of MIXes (with Eve as GPA or Eve as an RPA re-
stricted to observing the tra�c between MIX-�rewalls). Now there are Cluelessi;j 's
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Fig. 15. Exit �rewall only

at every ingress MIX and Receiveri;j 's at every egress MIX, again with a variety
of possible characteristics.

Other areas begging for further investigation include scenarios in which there
is limited network capacity (on links or aggregate), and whether or not there is
anonymity. We are currently investigating this using the model in which at most
B messages can be sent through the network (as output from a sender of as
output of a MIX-�rewall) in a given tick, and if there are more than B messages
awaiting transmission, B of them are chosen at random for delivery. This may
relate the work to more sophisticated MIX models, such as pool MIXes, which
is also desirable.

A deeper issue raised in this preliminary paper is that of the relationship
between anonymity and covert channel capacity (�xing the other factors that
a�ect capacity). It seems evident that as system level anonymity increases in
the simple models shown here (i.e., the number of potential senders increases),
the minimum capacity decreases to zero. However, as the probability that a
clueless sender transmits in a given tick increases, the expected number of actual
senders in a given time tick also increases, hence the anonymity increases, but
the capacity of the covert channel increases once this probability exceeds 0.5.
The relationships are not simple, but their discovery has the potential to increase
our understanding of fundamental aspects of network design.

35



4 Acknowledgements

We are grateful to Paul Syverson for his discussions about anonymity, to LiWu
Chang for his assistance with the mathematical results, and also to Gerry All-
wein.

References

1. The anonymizer. http://www.anonymizer.com/.
2. Oliver Berthold, Hannes Federrath, and Stefan K�opsell. Web MIXes: A sytem

for anonymous and unobservable internet access. In Hannes Federrath, editor,
Designing Privacy Enhancing Technologies: Design Issues in Anonymity and Ob-
servability, pages 115{129. Springer-Verlag, LNCS 2009, July 2000.

3. Oliver Berthold, Andreas P�tzmann, and Ronny Standke. The disadvantaages of
free MIX routes and how to overcome them. In Hannes Federrath, editor, Designing
Privacy Enhancing Technologies: Design Issues in Anonymity and Observability,
pages 27{45. Springer-Verlag, LNCS 2009, July 2000.

4. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84{88, 1981.

5. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley,
1991.

6. Claudia D�iaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Paul Syverson and Roger Dingledine, editors, Privacy Enhacing
Technologies (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

7. Robert G. Gallager. Information Theory and Reliable Communication. Wiley,
1968.

8. S. Kent and R. Atkinson. Security architecture for the Internet Protocol, 1998.
9. E.E. Majani and H. Rumsey. Two results on binary input discrete memoryless

channels. In IEEE International Symposium on Information Theory, page 104,
June 1991.

10. Ira S. Moskowitz and Myong H. Kang. Covert channels | here to stay? In Proc.
COMPASS'94, pages 235{243, Gaithersburg, MD, June 27- July 1 1994. IEEE
Press.

11. Richard E. Newman, Ira S. Moskowitz, Paul Syverson, and Andrei Serjantov. Met-
rics for tra�c analysis prevention. In PET 2003, Dresden, March 2003.

12. R. E. Newman-Wolfe and B. R. Venkatraman. High level prevention of tra�c
analysis. In Proc. IEEE/ACM Seventh Annual Computer Security Applications
Conference, pages 102{109, San Antonio, TX, Dec 2-6 1991. IEEE CS Press.

13. R. E. Newman-Wolfe and B. R. Venkatraman. Performance analysis of a method
for high level prevention of tra�c analysis. In Proc. IEEE/ACM Eighth Annual
Computer Security Applications Conference, pages 123{130, San Antonio, TX, Nov
30-Dec 4 1992. IEEE CS Press.

14. Onion routing home page. http://www.onion-router.net.
15. Andreas P�tzmann and Marit K�ohntopp. Anonymity, unobservability and

pseudonymity | a proposal for terminology. In Hannes Federrath, editor, De-
signing Privacy Enhancing Technologies: Design Issues in Anonymity and Observ-
ability, pages 1{9. Springer-Verlag, LNCS 2009, July 2000.

16. J. Postel. User Datagram Protocol, 1980.

36



17. A.P. Prudnikov, Yu. A. Brychkov, and O.I. Marichev. Integrals and Series, Volume
1. Gordon and Breach, 1986.

18. Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66{92, 1998.

19. I.J. Schwatt. An Introduction to the Operations with Series, 2nd edition. Chelsea,
1924.

20. Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Paul Syverson and Roger Dingledine, editors, Privacy Enhacing
Technologies (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

21. Claude E. Shannon. The mathematical theory of communication. Bell Systems
Technical Journal, 30:50{64, 1948.

22. Claude E. Shannon. The zero error capacity of a noisy channel. IRE Trans. on
Information Theory, Vol. IT-2:S8{S19, September 1956.

23. B. R. Venkatraman and R. E. Newman-Wolfe. Transmission schedules to prevent
tra�c analysis. In Proc. IEEE/ACM Ninth Annual Computer Security Applica-
tions Conference, pages 108{115, Orlando, FL, December 6-10 1993. IEEE CS
Press.

24. B. R. Venkatraman and R. E. Newman-Wolfe. Performance analysis of a method for
high level prevention of tra�c analysis using measurements from a campus network.
In Proc. IEEE/ACM Tenth Annual Computer Security Applications Conference,
pages 288{297, Orlando, FL, December 5-9 1994. IEEE CS Press.

25. B. R. Venkatraman and R. E. Newman-Wolfe. Capacity estimation and auditability
of network covert channels. In Proc. IEEE Symposium on Security and Privacy,
pages 186{198, Oakland, CA, May 8-10 1995. IEEE CS Press.

37


